The Therapeutic effect of Memantine through the Stimulation of Synapse Formation and Dendritic Spine Maturation in Autism and Fragile X Syndrome
نویسندگان
چکیده
Although the pathogenic mechanisms that underlie autism are not well understood, there is evidence showing that metabotropic and ionotropic glutamate receptors are hyper-stimulated and the GABAergic system is hypo-stimulated in autism. Memantine is an uncompetitive antagonist of NMDA receptors and is widely prescribed for treatment of Alzheimer's disease treatment. Recently, it has been shown to improve language function, social behavior, and self-stimulatory behaviors of some autistic subjects. However the mechanism by which memantine exerts its effect remains to be elucidated. In this study, we used cultured cerebellar granule cells (CGCs) from Fmr1 knockout (KO) mice, a mouse model for fragile X syndrome (FXS) and syndromic autism, to examine the effects of memantine on dendritic spine development and synapse formation. Our results show that the maturation of dendritic spines is delayed in Fmr1-KO CGCs. We also detected reduced excitatory synapse formation in Fmr1-KO CGCs. Memantine treatment of Fmr1-KO CGCs promoted cell adhesion properties. Memantine also stimulated the development of mushroom-shaped mature dendritic spines and restored dendritic spine to normal levels in Fmr1-KO CGCs. Furthermore, we demonstrated that memantine treatment promoted synapse formation and restored the excitatory synapses to a normal range in Fmr1-KO CGCs. These findings suggest that memantine may exert its therapeutic capacity through a stimulatory effect on dendritic spine maturation and excitatory synapse formation, as well as promoting adhesion of CGCs.
منابع مشابه
Fragile X mental retardation protein induces synapse loss through acute postsynaptic translational regulation.
Fragile X syndrome, as well as other forms of mental retardation and autism, is associated with altered dendritic spine number and structure. Fragile X syndrome is caused by loss-of-function mutations in Fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates protein synthesis in vivo. It is unknown whether FMRP plays a direct, cell-autonomous role in regulation of sy...
متن کاملEvaluation of the Effect of Aqueous Extract of Olibanum on the Expression of FMR1 and MAP1B Genes in the Rat Hippocampus
Introduction: The therapeutic properties of Olibanum have been considered in traditional medicine since ages past. Recent studies indicated the effect of Olibanum on memory enhancement and prevention/treatment of Alzheimer's disease. Fragile X mental retardation protein is the product of the FMR1 gene that mediates memory formation through the development of communications between nerve cells. ...
متن کاملDelayed Development of Dendritic Spines in Fxr2 Knockout Mouse
Fragile X syndrome, the most common form of inherited mental retardation is caused by silencing of the Fmr1 (fragile x mental retardation-1) gene. Two mammalian homologues of Fmr1 have been identified: fragile X-related Protein 1 (Fxr1) and Protein 2Fxr2. Aberrations in dendritic spines of Fragile X syndrome patients and Fmr1 null mice implicate FMRP in synapse fo rmation and function. However,...
متن کاملFragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons.
Fragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and functio...
متن کاملThe Arp2/3 Complex Is Essential for Distinct Stages of Spine Synapse Maturation, Including Synapse Unsilencing.
UNLABELLED Dendritic filopodia are actin-rich structures that are thought to contribute to early spine synapse formation; however, the actin regulatory proteins important for early synaptogenesis are poorly defined. Using organotypic hippocampal slice cultures and primary neuron hippocampal cultures from Arp2/3 conditional knock-out mice, we analyze the roles of the Arp2/3 complex, an actin reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012